Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Computer Science Engineering
 Class Test-I Session- July- Dec 2022 Month- December
 Sem- ${ }^{\text {th }}[A, B$ \& C] Subject- Microprocessor \& Interfaces - C022511(022)

Time Allowed: 2 hrs
Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain the architecture and function of each unit of 8085 Microprocessor.	$[8]$	Understanding	CO1
2.	Discuss the comparison between Harvard and Princeton Architecture.	$[8]$	Understanding	CO1
3.	Explain the Pipeline Architecture of 8086.	$[8]$	Understanding	CO2
4.	Explain the various addressing mode of 8086.	$[8]$	Understanding	CO2
5.	Write a program in assembly language to find count of even and odd numbers from a given series of 100 16 bit numbers stored in memory location from 2000:0D00H. Sore even count in BX and odd count in DX.	$[8]$	Apply	CO2
6.	Write a Assembly Language program to find the largest among among the series of 50 number. Store the largest no at 5000:2001H memory location.	$[8]$	Apply	CO2

Shri Shankaracharya Institute of Professional Management \& Technology Department of Computer Science Engineering

Class Test - I Session- July- Dec 2022 Month- December
Sem- $\mathbf{5}^{\text {th }}[A, B$ \& C] Subject- Microprocessor \& Interfaces - C022511(022)
Time Allowed: 2 hrs
Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain the architecture and function of each unit of 8085 Microprocessor.	$[8]$	Understanding	CO1
2.	Discuss the comparison between Harvard and Princeton Architecture.	$[8]$	Understanding	CO1
3.	Explain the Pipeline Architecture of 8086.	$[8]$	Understanding	CO2
4.	Explain the various addressing mode of 8086.	$[8]$	Understanding	CO2
5.	Write a program in assembly language to find count of even and odd numbers from a given series of 100 16 bit numbers stored in memory location from 2000:0D00H. Sore even count in BX and odd count in DX.	$[8]$	Apply	CO2
6.	Write a Assembly Language program to find the largest among among the series of 50 number. Store the largest no at 5000:2001H memory location.	$[8]$	Apply	CO2

	Shri Shankaracharya Institute of Professional Mana Department of Computer Science \& En Class Test-I Session- July-December, 2022 Sem- CSE 5 ${ }^{\text {th }}$ [A\&B] Subject- Computer Networks		\& Technology mber 2512(022)	
T Note:	ne Allowed: 2 hrs All questions are compulsory and carries equal marks..		Max Marks	
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
Q1	Design full ISO/OSI reference model. Explain the function of each layer.	[8]	Creating	CO1
Q2	Compare LAN, MAN and WAN with neat diagram.	[8]	Evaluating	CO 1
Q3	Explain the various methods of error detection and correction. Solve if the 7 -bit hamming code word received by receiver is 1011011 assuming the even parity state whether the received code word is correct or wrong. If wrong locate the bit having error.	[8]	Applying	CO2
Q4	Diffrentiate following protocols with neat diagram . a) Controlled Access Protocols b) Channelization Protocols	[8]	Understanding	CO2
Q5	Illustrate various features of following: a) ARP b) RARP c) DHCP d) Wireless Lan	[8]	Understanding	CO2

Shri Shankaracharya Institute of Professional Management \& Technology Department of Computer Science \& Engineering Class Test - I Session- July-December, 2022 Month- December Sem- CSE $5^{\text {th }}[$ [C] Subject- Computer Networks Code- C022512(022)
Time Allowed: 2 hrs
Note: - All questions are compulsory and carries equal marks..

Note: - All questions are compulsory and carries equal marks..		Marks	Levels of Bloom's taxonomy	COs
Q.N.	Questions			
Q1	Design full ISO/OSI reference model. Explain the function of each layer.	[8]	Creating	CO 1
Q2	Compare LAN, MAN and WAN with neat diagram.	[8]	Evaluating	CO1
Q3	Explain IP4 and IP6.	[8]	Applying	CO 3
Q4	Diffrentiate following protocols with neat diagram . a) Controlled Access Protocols b) Channelization Protocols	[8]	Understanding	CO 2
Q5	Illustrate various features of following: a) ARP b) RARP c) DHCP d) Wireless Lan	[8]	Understanding	CO 2

	$\text { Chospmduoo an suoysonb } \\| V^{-} \text {- :ao }$	8	$\overline{0}$		\bigcirc		\bigcirc			ƠO	\％
					$\begin{aligned} & \text { 䏠 } \\ & \frac{⿳ 亠 二 口 犬}{c} \end{aligned}$					等	皆
		$\begin{aligned} & \frac{2}{2} \\ & \frac{2}{\pi} \end{aligned}$	$\boldsymbol{\infty}$		$\boldsymbol{\sim}$		$\underset{\sim}{\infty}$			$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$
		$\begin{aligned} & \frac{a}{E} \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{y y y y}{0} \end{aligned}$						$\dot{4}$ 0 0 0 0 0 0 0 0 0 0			
		$\dot{8}$	＜		∞		\cup			\bigcirc	ш

Shri Shankaracharya Institute of Professional Management \＆Technology ssimpur Department of Computer Science \＆Engineering Class Test－I Session－Jul－Dec， 2022 Month－December Sem－CSE $5^{\text {th }}[A, B \& C]$ Subject－Formal Language and Automata Theory Code－C022513（022） Max Marks： 40				
Note：－All questions are compulsory				
Q．N．	Questions Discuss and differentiate between DFA，NFA and \in －NFA	Marks	Levels of Bloom＇s taxonomy	COs
A．		［8］	Understanding	CO1
B．	Construct a Moore machine from the given Mealy machine	［8］	Applying	$\mathrm{CO1}$
C．	Given NFA is Convert it into DFA．	［8］	Evaluating	CO1
D．	Consider the transition system，prove that the strings recognized are（using Arden＇s lemma）	［8］	Analyzing	CO2
E．	Apply Pumping Lemma to show that $\mathrm{L}=\left\{a^{i} b^{i} \mid i \geq 1\right\}$ is not regular	［8］	Applying	CO2

Shri Shankaracharya Institute of Professional Management \& Technology Department of Computer Science \& Engineering Class Test-I Session- JULY-DEC 2022 Month- December
Sem- CSE $5^{\text {th }}$ [A, B \& C] Subject- Data Analytics with Python Course Code: C022514(022) Time Allowed: 2 hrs

Max Marks: 40

Shri Shankaracharya Institute of Professional Management \& Technology

Department of Computer Science \& Engineering

Class Test - I Session- July-Dec` 2022 Month-December
Sem- CSE 5th [A, B \& C] Subject-Computer Graphics Code- C022531(022) Time Allowed: 2 hrs

Max Marks: 40

Note: - All questions are compulsory and carry equal marks.			Levels of	
Q. N.	Questions	Marks	Bloom's taxonomy	COs
Section I				
1	a. State various applications of computer graphics. b. Differentiate between Raster scan system and Random scan system?	[8]	Analyzing	CO1
2	a. The endpoints of a given line are $(20,10)$ and $(30,18)$. Scan convert the straight line using Bresenhems line drawing algorithm. b. Differentiate DDA and Bresenham`s line drawing algorithm.	[8]	Applying	CO1
3	a. Write midpoint circle drawing algorithm. b. Scan conert a circle having radius 10 and centered at origin using algorithm.	[8]	Applying	CO1
4	a. Magnify the triangle with vertices $\mathrm{A}(0,0)$, $B(1,1)$, and $C(5,2)$ to twice its size while keeping $C(5,2)$ fixed. b. Perform a 45degrees rotation of triangle $\mathrm{A}(0,0), \mathrm{B}(1,1), \mathrm{C}(5,2)$ about $(-1,-1)$.	[8]	Applying	CO2
5	Write 3D transformation matrix for a. Translation b. Scaling c. Rotation	[8]	Understanding	$\mathrm{CO2}$

